IP Routers: 400G and beyond

LINX114, November 2021 Bruno De Troch – Director of EMEA PLM IP Routing and Automation

© 2021 Nokia

NOKIA

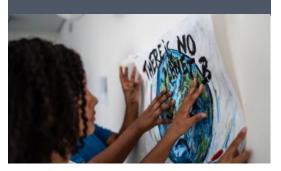
Major industry trends With COVID accelerating the impact

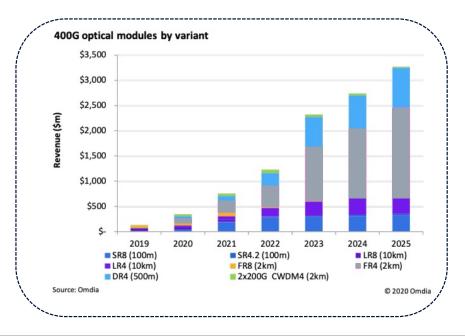
Digitalization of home, school and work has transformed our world and accelerated **data consumption**

Acceleration in global bandwidth consumption 2021

Today's fast growing network **threats** are just the tip of tomorrow's iceberg

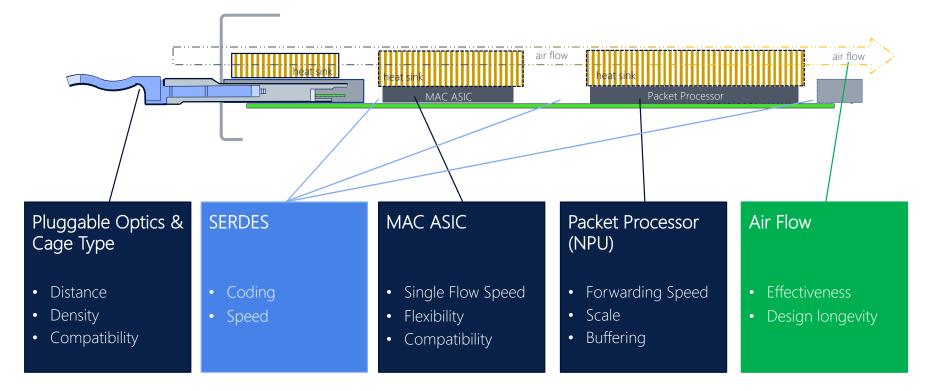
100%


YoY growth in DDoS traffic (2020)


The planet is under stress and **sustainability** is now a pressing issue for global networks

Emissions reduction by Nokia products & operations by 2030

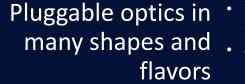
The 400G Wave Satisfying the increased capacity requirements



- Capacity requirements drive 400G optical module revenue
- Many module variants depending on the use case, cost and technology evolution
- 800G optical modules are around the corner (with benefits to early adopters)

400G+ wave driven via router innovation

Enabling the 400G+ Wave Key technology evolutions

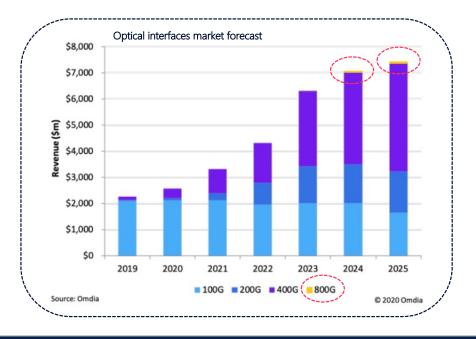


NOKIA

Pluggable optics and cage types

Diversity and uniformity

Cage types becoming universal • 100G+: QSFP28, QSFP28-DD, QSFP56, QSFP-DD 400, QSFP-DD 800 • 100G-: SFP, SFP28, SFP56, SDF-DD



- 100G Lambda: PAM4, 800G, higher 100G/400G density, cost reduction
- 400G ZR/ZR+: Coherent to enable "Pragmatic IPoDWDM" designs

Lambda

800G Around the corner

- First QSFP-DD 800 enabled router ports in 2022
- 1x800GE clear-channel standard in process
- First 800G optics mid-'22
 - 2x400 & 8x100 (16-18W)
 - 25% -43% power savings over 400G
 - Price neutral to 400G

NOKIA

Clear economic and power advantages to 800G

Pluggables for 400G and Beyond ... Optical interface technology enablers

Formfactor

Packaging

Photonics & Drivers

- Mechanics and Cooling
- Router Interface density

Optical modulation and number of

affecting cost and performance.

wavelengths (lambda's) are the key factor

100G Lambda is BARE-MINIMUM for 800G

100G Lambda MULTI-SOURCE AGREEMENT

DSP/MLG

- Modulation/Demodulation digital signal processing
- One of KEY factors in defining power/thermal envelopes of the module

Attachment Unit Interface (AUI)

Arbitrary example photo of an optical pluggable PCB for illustration purpose

- Data transmitted over Electrical SerDes links
- 400G today relies on 56G SerDes
- 100G SerDes is KEY for 800G

IEEE P802.3ck

SerDes

• Serializer/Deserializer

- Connection between ASICs and towards cage
- Increasing speeds of an individual lane: 10G, 28G, 56G
- Latest specification: 100G SerDes (802.3ck)
 - Use of PAM4 modulation
 - Well-aligned with optics evolution (100G Lambda)
- Benefits
 - Higher I/O possible
 - Better power characteristics and cost
- Complex, but necessary evolution

MAC ASIC and Packet Processor (NPU)

Evolving the router's data-plane to higher speeds, scale and capabilities

Enabling 400G+ interfaces requires an evolution across the main forwarding components* of the router

MAC

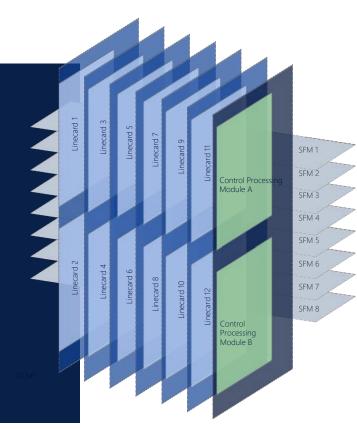
- 100GE, 400GE and evolution to 800GE (and higher)
- Optional support for
 - MACSec
 - Flex-E
 - Intelligent Aggregation

Store

- Buffer characteristics
 - Location (ingress, egress, both)
 - Size
 - Bandwidth (full vs partial)

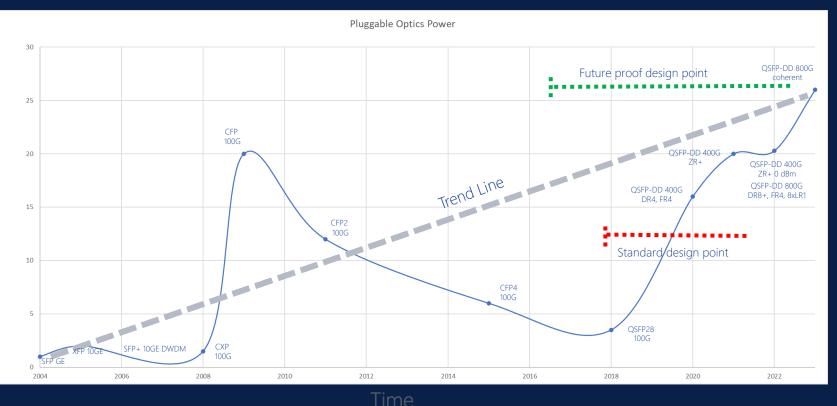
Forward

- Lookup/forwarding speed
- Scale
 - FIB scale
 - ACL scale
 - uRPF impact
- QoS support

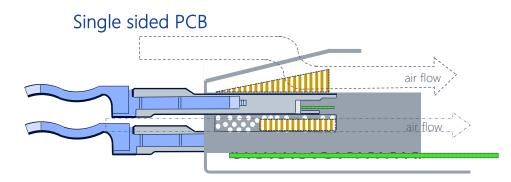

* Different implementations/combinations possible

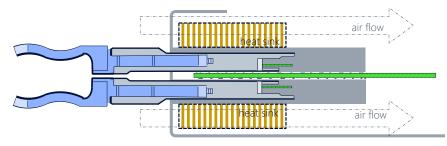
System architecture Design Considerations

Mechanical design of huge significance Midplane vs. Orthogonal Direct Cross Connect Line card pitch & orientation Cooling design Power design Impacts


- Density
- Power consumption
- Optics support

Optics power evolution


The challenge of cooling today's and tomorrow's optics



LINX114

Optics cooling design

Dual sided PCB

Stacked SFP Cages

- Classic DC design
- Large heat sink only on top cage
- Bottom cage always hotter imbalanced optical performance
- DD Design point ~13W optics in all cages at 40C
- Limits applicability to future optics
- Fans might have to run faster

Belly-to-Belly SFP Cages

- Future proof design
- Large dedicated heat sink per cage
- Even cooling to all cages
- Cooling to 26W+ in all cages at 40C

Enabling 400G and beyond on IP routers Design choices along the datapath

Platform

Mechanical design Power Cooling

Dataplane & chipset interconnect

Forwarding MAC SERDES

Pluggable Optics SFPDD-100, QSFP28, QSFP56-DD, QSFPDD-800

NOKIA

