https://faelix.link/linxman2021

STEERING EYEBALLS CLOSER TO CONTENT WHOLESALE NETWORKS TRICKS FOR LOCAL TRAFFIC DELIVERY

About Marek

- Stuff I do:
 - CTO @FAELIX https://faelix.net/
 - PC @uknof https://uknof.uk/
 - Crew @net_mcr https://www.netmcr.uk/
- Me @maznu @NetworkMoose

About Faelix

- LINX Silver Partner (LON1, LON2, Manchester)
- Supporting alt-nets (e.g. UKWISPA Consultants)
 - Colocation and interconnection
 - Transit and peering
 - VNF hosting (NFV VPSs)
 - Wholesale connectivity
- Look out for the "AS41495 Faelix Limited" SSID

This Talk

- Aimed at Internet access providers, or networks with a predominantly inbound traffic ratio.
- Consuming wholesale "national ethernet" or L2TP broadband services, or building their own last mile networks using fixed wireless or fibre technologies.
- With multiple "core" sites where their ASN takes transit and is peering on national and regional IXs.

EXAMPLE ACCESS ISP

TYPICAL TRAFFIC FLOWS

Challenges

- If predominant traffic were outbound, could TE.
 - How do we help the CDNs deliver traffic locally?
- "National" IX traffic dominates "Regional" IX.
 - How to balance traffic from CDNs on both IXs?
- Backbone capacity roughly equal to peering capacity.
 - Why did we even bother building outside \$capital?
 - How do we retrofit \$capital into our local alt-net?

CONTENT NETWORKS

- Eyeballs make a DNS query to CDN.
- CDN responds with something that is nearby.
- How they do this is their secret sauce.

Mix of anycast, GeoIP, and control plane magic.

Inspiration

- Thomas Mangin (Exa Networks) LINX 96 talk about using DNS resolvers and announcing more-specific POP-local prefixes to attract inbound traffic to POPs.
- Most CDNs will accept more specifics.
 - CDNs probably build prefix-list filters from your RIPE DB route objects, and may not apply "le 24".
 - But not all CDNs do iBGP on backbone, so some CDN POPs will only receive your aggregates, and serve traffic to you anyway!

That Helps With...

But Doesn't Help With...

NATIONAL ETHERNET

Example exchange **CPE** "Leased Line" **NTE** Wholesale **National Network ISP NNI BGP**

NOT-SO-SHADOW VLAN

Lightbulb Moment

- National Ethernet providers (SSE, TTB, Virgin, others) market "shadow VLAN" for resilience.
- But pricing for a tail circuit does not vary depending on which NNI(s) it is presented upon.
- Cost of national backhaul is "baked in".
- "Shadow" VLAN is allowed to be used for carrying production traffic alongside "Main" VLAN.
- So why not use both?

Challenge

Challenge

Shadow VLANs

Not-So-Shadow VLANs

Net Result

But What About Anycast?

ANYCAST VS ANYCAST

Challenges

- Are you able to notionally allocate a /24 per POP?
 - Do you have enough /24s?
 - Are your customers' addresses already allocated (e.g. sequentially) and there is no locality to /24s?
- What do you do when you run out of addresses for customers from one POP's /24?
- Is your IPAM, outgoing prefix-list and route-map automation going to be able to accommodate this?

BGP CDN SHADOW VLAN

But What About Anycast?

- CPE no longer has single default route.
 - Or accepting default from multiple BGP sessions.
- Which of main/shadow VLANs is preferred "default"?
 - Closest?
 - Most IX traffic?
- Want to also propagate "golden subnets" to CPEs:
 - Including CDNs' anycast DNS prefixes.
 - Destinations for outbound traffic.

Golden Prefixes

- We already use BIRD route servers.
- We have a route server in each POP.
- We already automate the RS configuration and deployment using SaltStack.
- Simple enough to add a special filter:
 - Was this prefix learned from IX/PNI near this NNI?
 - Is this prefix "golden" CDN/anycast/DNS?
 - Or a "big destination"?

How We Decide "Golden"

- Do we peer with origin ASN on LON1/2 and MAN?
 - If yes: accept both, maybe local-pref MAN.
- Is peering, and origin ASN in \$list_of_CDN_ASNs?
 - If yes: accept, so CPE has more specific.
- Is peering, and origin ASN in "top 20 destinations"?
 - If yes: accept, so CPE prefers over default route.

BIRD: Golden Prefixes

```
function is_golden_cdn( bgppath p ) {
     {% for asn in salt['pillar.get']('golden_cdns',[]) %}
       if p ~ [= * {{ asn }} * =] then return true;
    {% endfor %}
    return false;
filter golden_cdn {
     if is_golden_cdn( bgp_path ) then {
       {% for prefix in salt['pillar.get']('local_ixs_ipv4',[]) %}
         if bgp_next_hop ~ {{ prefix }} then accept;
       {% endfor %}
    reject;
```

BIRD: Golden Prefixes

```
function is_golden_cdn( bgppath p ) {
     {% for asn in salt['pillar.get']('golden_cdns',[]) %}
       if p ~ [= * {{ asn }} * =] then return true;
                                                   IX networks near RS
    {% endfor %}
    return false;
I filter golden_cdn {
     if is_golden_cdn( bgp_path ) then {
       {% for prefix in salt['pillar.get']('local_ixs_ipv4',[]) %}
         if bgp_next_hop ~ {{ prefix }} then accept;
       {% endfor %}
     reject;
```

```
protocol bgp {{ prefix }} {
    local as {{ rs asn }};
    neighbor {{ remote_address }} as {{ remote_asn }};
    source address {{ rs_address }};
    multihop;
    igp table myself;
    gateway recursive;
    next hop keep;
    import none;
    export filter golden_cdn;
```

```
protocol bgp {{ prefix }} {
     neighbor {{ remote_address }} and FIB and resource address {{ rs_address }}; multihop; igp table mysself:
      local as {{ rs asn }};
                                                    remote_asn }}:
      igp table myself;
      gateway recursive;
      next hop keep;
      import none;
      export filter golden_cdn;
```

```
neighbor {{ remote_address }} as {{ re_BEP route-server} source address }} in the line is a server and the line is a server as a server as
protocol bgp {{ prefix }} {
                                                                      next hop keep;
                                                                      import none;
                                                                     export filter golden_cdn;
```

```
protocol bgp {{ prefix }} {
    local as {{ rs asn }};
    neighbor {{ remote_address }} as {{ remote_asn }};
    source address {{ rs_address }};
    multihop;
    igp table myself;
    gateway recursive;
                              the "magic"
    next hop keep;
    import none;
    export filter golden_cdn;
```

```
protocol bgp node200222_cgnv6dsl {
    local as 41495;
    neighbor 46.227.202.104 as 65432;
    source address 46.227.201.12;
    multihop;
    igp table myself;
    gateway recursive;
    next hop keep;
    import none;
    export filter golden_cdn;
```

```
protocol bgp node200222_cgnv6dsl {
                                      What's this?
    local as 41495;
    neighbor 46.227.202.104 as 65432;
    source address 46.227.201.12;
    multihop;
    igp table myself;
    gateway recursive;
    next hop keep;
    import none;
    export filter golden_cdn;
```

```
protocol bgp node200222_cgnv6dsl {
                                      what's this?
    local as 41495;
    neighbor 46.227.202.104 as 65432;
    source address 46.227.201.12;
    multihop;
    igp table myself;
    gateway recursive;
    next hop keep;
    import none;
    export filter golden_cdn;
```

Show Us The Graphs!

Show Us The Graphs!

BGP CDN ECMP FTTX

Aggregating XDSL

- We sell IP transit on LLs and FTTX to help alt-nets build out backhaul (either primary or backup).
- FTTP 1000M is great when you can get it, but what if we're limited to GFast or even FTTC?
- MLPPP was in vogue for a while for access providers, but we're more familiar with data-centre technologies than CPE/BNG/LNS inter-op issues.
- Can we find parallels with "Not-So-Shadow VLANs"?

Avoiding Scenic Routing

- Much of the UK's broadband infrastructure is aggregated back to London.
- But some LLU operators can break out and hand off circuits elsewhere (Zen, Entanet, others?).
- Can we minimise traffic traversing both our backbone, and our wholesale provider's backbone?

CPE-Directed Steering

- Order circuits on both BTW and LLU networks.
- Choose which region's LNSs they establish to.

- We added a feature to our RADIUS+L2TP setup: user+steer@realm
 - Rewritten to user@steer.realm for L2TP steering.
 - But RADIUS behaves likes user@realm for LNS.

BIRD: CPE via eBGP

```
protocol bgp node200222_cgnv6dsl {
                                      What's this?
    local as 41495;
    neighbor 46.227.202.104 as 65432;
    source address 46.227.201.12;
    multihop;
    igp table myself;
    gateway recursive;
    next hop keep;
    import none;
    export filter golden_cdn;
```


BIRD: CPE via eBGP

```
protocol bgp node200222_cgnv6dsl {
    local as 41495;
    neighbor 46.227.202.104 as 65432;
    source address 46.227.201.12;
                              learning golden prefixes the north
    multihop;
    igp table myself;
    gateway recursive;
    next hop keep;
    import none;
    export filter golden_cdn;
```


7 Days of Data

CONCLUSIONS

Summary

- Analysing how DNS resolution affects which POPs a CDN sends you traffic is the beginning.
- Using multiple physical or logical connections to a customer site can add resilience, but also can be beneficial for traffic routing.
- Applicable to both ethernet and broadband services.

Why Bother?

- Keep traffic local:
 - Lower latency, fewer hops.
 - Less traffic tromboning backbones.
- Use local peering:
 - Regional IX tend to have lower port costs.
 - Spreads load for you and for the CDNs.
- Improve resilience:
 - Survive single-POP and single-IX problems.

ASK ME ABOUT BGP

E: marek @ faelix . net

T: @maznu

T: @faelix

W: https://faelix.net/

https://faelix.link/linxman2021

